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In the first note (Ranking Before Prediction), | argued that many
guantitative equity systems are not prediction engines but ranking
systems. They normalize information, combine factors, induce an
ordering, and act almost exclusively on the extremes of that ordering.

This naturally leads to the next question:

If ranking is the object, why not learn the factor weights that
produce the correct ranking?

At first glance, this seems straightforward.

Given factor information at time t and realized returns over a future
window, why not infer the weights that would have generated the
observed ordering?

This note explains why that question — weight recovery from
realized rankings — is not well-behaved in the usual sense, why this
difficulty is structural rather than technical, and why practitioners
repeatedly converge on heuristics, constraints, Monte Carlo
exploration, and stability analysis instead of precise coefficient
estimation.
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A crucial distinction: forward vs inverse problems

Let’s start by separating two problems that are often conflated.

The forward problem (well-defined)

Given:

* a set of factor vectors Z;,

* aweight vector a,
we compute scores:

s=a'zZ;

and then rank the stocks by s.
This is:

* deterministic,

+ stable,

* and unambiguous.
There is nothing ill-defined about producing a ranking from weights.

The inverse problem (the subject of this note)

Given:

« factor vectors Z;,

» arealized return ordering over some future window,
infer the weights a that “generated” that ordering.
This is a different problem entirely.

It is this inverse problem — mapping from an observed permutation back to weights — that

behaves badly.

Why regression can succeed — and why that does not solve

the problem
Linear regression is often the first tool considered.
Regression minimizes average squared error:

min,Y i(ri—a’ZzZ;)?

Regression can recover a ranking that matches realized returns when:



 signal is strong and linear,

* noise is low,

* horizons are long,

» the universe is small or homogeneous.
In those regimes, many methods agree.

But regression is not trying to recover an ordering.
It optimizes level fit, not rank stability, truncation, or tail behavior.

When regression succeeds at ranking, it does so incidentally — not structurally.

That distinction matters because the regimes that motivate ranking systems (short horizons,
heavy tails, large universes) are exactly those where regression’s success probability collapses.

Ranking as a projective map and equivalence classes
The key mathematical structure is simple but easy to misstate.
If a weight vector a produces a ranking, then:
any c-a for anyc >0

produces the same ranking.
This does not mean:

* signs alone matter,

* magnitudes are irrelevant,

+ all weights are equivalent.
It means only this:

Ranking is invariant to global rescaling.

Global scale removes one degree of freedom.
What remains — the relative proportions between factors — is essential.

Vectors like (0.1,0.7) and (0.3,0.4) have the same signs but different directions.
They lie on different rays and can produce very different rankings in practice — exactly as
practitioners observe.

So the natural object is not a point in weight space, but a direction: a ray modulo scale.

Why multiple weight vectors produce the same ranking

Once we work in direction space, a deeper issue appears.
Each pairwise ordering constraint:
a'(z-z,>0
defines a half-space in weight space.
The set of weights consistent with an observed ranking is therefore:



* an intersection of half-spaces,
* aregion, not a point.
This region reflects:
 correlated factors,
* near-ties in returns,
* noise in outcomes,
* truncation of relevance to the top of the ranking.

There is no mathematical reason for this region to collapse to a unique direction — and
empirically, it rarely does.

Zero-projection stocks and the decision hyperplane

An intuition that often arises in practice is the importance of stocks with near-zero projected
returns.

Geometrically, for a given weight direction a, the set:
a'z=0

defines a decision hyperplane.
Stocks near this hyperplane:

+ flip sign under small perturbations,

» reshuffle easily in the middle of the ranking,

« dominate turnover and instability.
Permutations among these stocks do not materially affect the coarse ranking.

This is not a kernel in the strict algebraic sense — the ranking operator is not linear — but it is a
meaningful equivalence structure: a region of indifference where ordering carries little economic
meaning.

Studying this boundary often reveals more about robustness than studying precise coefficient
values.

Why repeated years help — but do not restore uniqueness

A natural response to non-uniqueness is:
“Test the weights across multiple years.”

This is sensible and necessary — but it does something specific.
Multiple periods:

* intersect feasible regions,

+ eliminate fragile directions,

» stabilize signs and ratios.



What they typically do not do:
* identify a unique optimal weight vector,
 eliminate trade-off directions,
» collapse the solution to a point.

What survives is usually a cone or tube of directions — narrower, more stable, but still not
unique.

This is not failure.
It is the correct outcome given the object.

Monte Carlo as geometry exploration, not optimization
Seen this way, Monte Carlo sampling is not a crude optimization trick.
Properly used, it:

» samples directions (after removing scale),

+ identifies which directions are compatible with observed rankings,

* reveals sign stability and factor trade-offs,

* exposes the width of the feasible region.
Monte Carlo answers:

“What must be true for the ordering to hold?”

not:
“What is the one true set of weights?”

That shift in question is essential.

A concrete compute perspective
To make this tangible, consider a realistic setup:
» 3000 stocks
* 60 countries
* 10 sectors
+ ~5-10 normalized factors per stock
A typical workflow might be:
1. Normalize factors within sector.
2. Rank stocks within each country by a linear score.
3. Select top and bottom subsets.
Now suppose we explore weight directions via Monte Carlo.
For each sampled direction:
« compute dot products (3000x10),



 sort stocks within each country,

* evaluate a ranking metric (e.g. top-k overlap or average top-decile return).
Even with tens of thousands of samples:

 the dot products dominate compute,

* sorting is secondary,

» the problem is tractable on ordinary hardware.
But note what compute is not doing here:

* itis not converging to a unique solution,

 itis not “learning” coefficients in the regression sense.
Compute is being used to map geometry, not to chase precision.

Why this behavior was historically misunderstood

In the early 2000s, treating realized rankings as mathematical objects felt unnatural.

Statistics focused on expectations.
Algebra focused on abstract permutations, not empirical ones.
Finance focused on continuous-time models.

Ranking under uncertainty had no natural home.

Only later — driven by information retrieval, recommendation systems, and machine learning —
did ranking emerge as a first-class object of study.

Practitioners encountered it earlier because they had no choice: capital allocation is discrete,
truncated, and tail-driven.

Theory followed practice, not the other way around.

What this reframes about factor weights

The conclusion is not that factor models are meaningless.
It is more subtle:
» factor weights are coordinates, not parameters of reality;
 their global scale is irrelevant;
* their relative proportions matter;
* their exact values are rarely identifiable from rankings alone.
The real objects of interest are:
+ stable directions,
* sign constraints,
* trade-off structure,
* robustness under perturbation.



This explains why experienced practitioners:
» stop short of aggressive optimization,
* rely on heuristics and constraints,
* emphasize turnover and stability,
 distrust “best” models.

A precise statement of the core insight

Here is the cleanest formulation:

While inducing a ranking from factor weights is a well-defined forward problem, inferring
factor weights from a realized return ordering is a non-identifiable inverse problem. The
ranking map identifies equivalence classes of weight directions, and repeated
observations typically stabilize regions rather than single solutions.

That statement avoids drama and matches both mathematics and practice.

Closing thought
The persistent failure to pin down “true” factor weights is not a tooling problem.

It is a signal that the object being studied — ranking under noise and truncation — does not
support that level of identification.

Once this is accepted, the focus shifts naturally:
from optimization to robustness,

from precision to geometry,

from point estimates to regions.

That shift is not a concession.
It is progress.
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